PMMDA GUIDE TO ROBOTS

Guide to

ROBOTS

CODE OF PRACTICE 30/4 Sept. 1999

Introduction

This document has been compiled by the PMMDA to provide general information on Robot types and applications. People unfamiliar or with varying degrees of Robot experience will find this guide a useful aid in selecting the correct type of Robot for an application. Benefits, justifications and grippers are also covered.

Application of Robots

Robots are ideally suited to applications involving repetitive, cyclic operations. The Robot will ensure consistent cycle times and will always accurately follow the programmed paths. Inspection of parts can be carried out by vision, weight and check stations, which signal to the Robot production of good or bad parts. The Robot will continue it's normal path for good parts and can be programmed to follow a different path for rejects. Robots are equipped with counters, which are used to count parts packed/placed or rejects.

Ease of programmed and gripper changes allow even short production runs to be automated.

Typical Mould Shop Applications

Insert loading mould and post moulding. Palletising/packing.

Part orientation Welding/heat staking.

Printing/labelling/decoration. Unmanageable due to weight/height/environment

De-gate parts from sprues Inspection

Separate cavities e.g. left from right handed parts Assembly

Clean room operations Routing

Adhesive applications

Benefits in Automating a Moulding Machine

To ensure consistent cycle times when compared Produce parts to higher specification

to a machine running in semi-auto or using an operator.

Added value via secondary operations.

Minimise mould open time.

Prevent damage and contamination to mouldings when ejected whilst running a fully automatic cycle.

Increased productivity

Predictability in production timings.

Labour deployment

New Business

Operator safety e.g. repetitive strain injury.

Reduce mould wear and damage

Reduced labour costs.

Improved quality, reject reduction.

Faster cycle times.

15-20% increase in good parts

Company Image

Financial Justification

The U.K. investment in automation lags behind many of it's European neighbours, who are reaping the benefits of a reduction in labour costs, increase in quality and quantity. Many indirect cost savings are sometimes overlooked: such as losing supplier status due to defect parts, the time and effort wasted when full deliveries are returned due to one defective moulding and the gaining of a new customer who is aware that automation ensures they get the best price and quality.

Even when some labour is used the indirect benefits mentioned must be an extremely high value. In the majority of cases the pay back time for a robot can be less than one year.

Common Robot Types (Mechanical Structure)

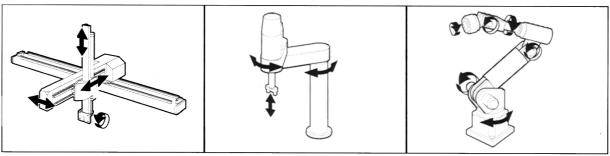


Fig.1 CARTESIAN

Fig.2 SCARA

Fig.3 ARTICULATED

 Cartesian Robot - also known as beam or gantry. Always with linear axes, horizontal, vertical and de-mould. Usually specified with 1 or more rotational axis. Mounting of the Robot is normally platen or floor fixing.

Access to the mould is normally top or side entry.

Mouldings are generally deposited at the rear/front or end of the moulding machines. Fig.1, NB. Cartesian Robots can be equipped with a second vertical arm for sprue or part removal from 3 plate tools.

Sprue Pickers - used for part/sprue separation

- **2. Scara Robots** Robots whose arms have two parallel rotary joints to provide compliance in a plane (can have from three to five axis). Fig. 2.
- **3. Articulated Robots** Generally used in automation cells e.g. glueing, spraying, welding and assembly. Occasional use on moulding machines. Fig. 3

Press/Robot Interface - Euromap 12 or 67

To simplify and standardise the interface between moulding machine and the Robot, standard interfaces have been developed, these interfaces are called Euromap 12 and Euromap 67.

Older robots and machines are usually equipped with Euromap 12 interface, more modern machines are equipped with the Euromap 67 standard. The updated Euromap 67 was adopted mainly to increase safety of the operator and machine by utilizing dual contact safety circuits employed in the latest standards.

It should be noted that the interfaces are not compatible with each other, there are a different number of pins in the connectors between the two interface types. Euromap 12 connectors have 2 x 16 pin inserts; Euromap 67 connectors have 2 x 25 pin inserts. This is the easiest way to identify which Euromap type is on your machine/robot.

To enable a handling device (Robot) to run efficiently and moreover safely, it is usual that a EUROMAP interface is fitted to the moulding machine. Certain signals must be exchanged between the moulding machine and the Robot during the moulding cycle. E.g. mould open confirmation, or core and ejector function.

The Robot Interface cable terminates in a standard Harting Plug which simply connects to the mating socket on the moulding machine when fitted with the same Euromap interface.

Most moulding machine suppliers offer this Robot Interface.

The scope of the Euromap interface goes beyond the exchange of signals and also specifies the electrical connections of the Robot. The only note of caution is that the interface specifies 400VAC Three Phase Cekon socket mounted to the machine. Some more simple manipulators and sprue pickers require only a single-phase supply.

Some machine manufacturers integrate their robots into the moulding machine controller, and supply both as a package. This type of package can mean no Euromap robot interface is fitted to the machine, as the robot is wired directly into the machine controller and programmed through the IMM operator screen. This is important to know, in the event that the owner ever replaces the robot in the lifetime of the machine, should a robot from an alternative supplier is selected, the cost of adding a Euromap interface has to be factored into the decision.

Other Interfaces

An interface similar to the foregoing description is always necessary, there are however another types of interfaces that are available.

EUROMAP 79, which enables the microprocessor control of the moulding machine to communicate with the microprocessor of the robot.

It enables data of the robot to be stored and recalled from the moulding machine controller. It also enables certain information from the robot to be transferred to the screen of the machine, such as error messages.

The interface gives a higher level of integration between the Robot and moulding machine.

Mechanical Interface:

The fixing holes in the platen of the machine for mechanically attaching the Robot to the press are defined by EUROMAP 18.

Safety Interfaces:

When the robot enters the mould area from the side (typical of tiebarless machines, side entry or articulated robots mounted at the side of the machine), there are applicable Euromap standards applying to this. Machine manufacturers will supply these interfaces these upon request. Euromap 73 and the updated Euromap 78 manage the interface between the injection moulding machine and external safety devices.

Visit the PMMDA Website for a link to EUROMAP for full descriptions.

End of Arm Tooling (EOAT) - Points for Consideration

What to consider when selecting/designing End of Arm Tooling

- 1. Rigidity desires, weight and size of moulding
- 2. Is the component freely ejected etc. see 9 below.
- 3. Suitable materials of vacuum pads and gripping fingers to be non marking and heat resistant
- 4. Location of gripping areas on moulding i.e. stability and non marking of products.
- 5. Accuracy of repeatability of picking position
- 6. Method of retaining moulding i.e. vacuum pads, mechanical gripping etc.

- 7. Does the EOAT require additional facility for sub-gates and/or cutting of sprues on the end of arm tooling.
- 8. What type of component detection is required for moulding and/or runners.
- 9. Is the moulding to be transferred into a secondary operation, or packaged is the moulding EOAT suitable for this.
- 10. Is the component to be removed from the fixed or moving half of the tooling.
- 11. Are the required services obtainable from the robot i.e. number of vacuum circuits, number of gripping circuits input/output, electrical and pneumatic control, lifting capacity.
- 12. Are the components freely ejected. Do the components sit on ejectors/fall, are there undercuts causing the parts to ping off, etc.
- 13. Ensure sufficient mould daylight available
- 14. Suitable ejection/core sequence
- 15. Keep weight of EOAT to a minimum, and within the payload of the robot when part weight is added
- 16. Consider time for EOAT operation.

Common Terms Associated with EOAT

Grippers & fingers
Vacuum Pads/cups
Spring mounted vacuum pads/cups.
Quick release
Universal end of arm tooling
Component detection

- Vacuum controls - photo cell - limited switch

Sprue grip
Degating
Insert loading/over moulding
Label insertion
Dedicated end of arm tooling

Type of Drives and Controls

Typical characteristics of the popular Drives and Controls.

The table below provides some general guidance on the broad characteristics of the different types of drives and controls available on the market.

PLC - Programmable Logic Controller is capable of carrying out basic sequences. Positions are normally manually set by mechanical end stops and limit switches.

CNC - Computer Numerical Control is freely programmable and allows complex sequences to be carried out. CNC Robots are ideally suited to secondary operations. Feed back is normally by encoders giving position and speed information. Multi programme storage and recall is via 3½" disk.

	PNEUMATIC +PLC	INDUCTION +CNC	SERVO MOTOR +CNC
SPEED	Average	Average/fast	Fast
POSITIONING	Damped end stops	+/- 0.1mm	+/- 0.1mm
POWER CONSUMPTION	Low	Average	Average
AIR CONSUMPTION	High	Low	Low
OPERATING NOISE	High	Average	Average
RELIABILITY	Good	Good	Good
EASE OF SETTING	Manual	Easy	Easy
FLEXIBILITY	Low	High	High
PRICE	Low Cost	Medium	Medium/High

Robot Guarding

This is best left to the Robot supplier, who will supply the mechanical guarding, lightbeams/pressure mats and interlocks to ensure safe operation of the Robot system, in accordance with The Supply of Machinery (Safety) Regulations 1992.

The mechanical guarding can be supplied in various forms and combinations, the most common being welded box frame in-filled with mesh or polycarbonate. Aluminum profile is often used for the frame work.

C E Marking

The CE mark does not guarantee equipment is safe, it merely confirms that the equipment complies with the relevant European Standards. When a Robot is used in conjunction with other machinery such as a moulding machine and can not be on it's own, a certification of incorporation is issued by the supplier.

It is the responsibility of the system user or customer to nominate the responsible person, who maybe one of the suppliers, the user themselves or a third party company qualified to undertake this type of conformity assessment.

Basic Considerations on Robot Selection

Before a robot or system can be specified, the robot supplier has to consider the following:

Moulding machine type and size. Part size and weight.

Number of impressions. Unloading position -front/rear.

Height restrictions/cranes etc. Secondary operations

Sprues to collect. Cycle Time.

Degate required.

The following table shows Robot selection for varying applications.

Considerations on Robot Selection

TASK	Pneumatic PLC	Induction Motor + CNC	Servo Motor + CNC
Moulding machines:			
Up to 250t Clamp	YES	YES	YES
250-1000t Clamp	NO	YES	YES
1000-4000t Clamp	NO	YES	YES
Sprue Picker	YES	NO	NO
Low cost basic part removal to one	<u> </u>	119	
defined position.	YES	NO	NO
Low cost basic part removal to two			
defined positions.	YES	NO	NO
Removal to several positions on			
each axis.	NO	YES	YES
High Speed minimum mould opening			
time.	NO	NO	YES
Dual action grippers for insert			
loading + part removal	NO	YES	YES
Simultaneous controlled axis			
movement.	NO	YES	YES
Robot moving with Moulding			
Machine platen.	NO	YES	YES
Weights up to 10 Kg	YES	YES	YES
Weights above 10Kg	NO	YES	YES
Extended axis travel	NO	YES	YES
Multi Tasking Systems with up and down stream equipment controlled by robot.	NO	YES	YES

OTHER TITLES IN THE SERIES INCLUDE: Granulators, Drying, Mould Temperature Control and Chilling

CODE OF PRACTICE 30/4 Sept 1999

Arburg Limited

Contact: Mr Frank S Davis Tel: 01926 457000

Email: frank davis@arburg.com

Conair Europe Limited

Contact: Ms Kimberley Head

Tel: 01189 335700

Email: sales@conaireurope.co.uk

Electron Tech Limited

Contact : Mr A Sargisson Tel: 01327 312211 Email: sales@electrontech.co.uk

Hi-Class Machinery Limited

Contact: Mr Bob Wilson Tel: 01536 517557

Email: sales@hiclassmachinery.co.uk

Jenco Controls & Export Ltd

Contact : Mr Paul Jensen Tel: 0181 504 6565 Email: pjensen@jenco.co.uk

Neureder UK Limited

Contact: Mr Richard

Meechan

Tel: 01628 669293

Email:

richard.meechan@neureder.com

Spaceminster Ltd

Contact: Mr P Stanniford

Tel: 01908 513336

Fmail:

phil.staniford@spaceminster.co.uk

Wittmann (UK) Limited

Contact: Mr Barry Hill Tel: 01933 275777 Email: info@wittmann.co.uk

ATM Automation Limited

Contact: Mr Robert Bartholomew

Tel: 0116 277 3607

Email: atm.automation@dial.pipex.com

Demag Hamilton Ltd

Contact : Mr Ted Waller Tel: 01296 318200

Email: ted.waller@hamilton.demag.com

Engel UK Limited

Contact: Mr Steve Davies Tel: 01926 335000

Email: euk@engel.at

Hi-Tech Automation Limited

Contact: Mr Gary Probert

Tel: 01604 496964

Email: sales@hitechautomation.com

Modular Handling Ltd

Contact: Mr William Bourn Tel: 0121 766 7979 Email: bourn@modula.co.uk

Sandretto (UK) Limited

Contact: Mr T O'Reilly Tel: 01788 544 221

Email: welcome@sandretto.co.uk

Star Automation UK Ltd

Contact: Mr Peter Park-Davies

Tel: 01926 889777

Email: sales@uk.star-europe.com

Battenfeld (UK) Limited

Contact: Mr Robert Sayers

Tel: 01494 450911

Email: sayers.r@vuk.battenfeld.com

Eastern Plastics Machinery Ltd

Contact: Mr Mark Hodge

Tel: 01376 562288

Email: eastern.plastics@dial.pipex.com.

Ferromatik Milacron

Contact: Mr D Lister Tel: 01246 260666

Email: admin@ferromatik.co.uk

Husky Injection Molding Systems Ltd

Contact : Mr Steven Jacques

Tel: 024 76 518900 Email: sjacques@husky.ca

Netstal Limited

Contact: Mr Bob Jackson Tel: 01785 815166 Email: sales@netstal.co.uk

Sepro Robotique

Contact: Mr Paul Goodhew

Tel: 01908 223116

Email: paulgoodhew@tinyworld.co.uk

Summit Systems Limited

Contact: Mr Mike Jordan

Tel: 01827 265800

Email: info@summitsystems.co.uk

The " GUIDE TO .. " series are produced by PMMDA

Polymer Machinery Manufacturers and Distributors Association. P.O. Box 2539, Rugby, Warwickshire, CV23 9YF T: 0870 2411474 F: 0870 2411475 E:pmmda@pmmda.org.uk